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Abstract
The dynamics of a soft sphere model glass, studied by molecular dynamics,
is investigated. The vibrational density of states divided by ω2 shows a
pronounced boson peak. Its shape is in agreement with the universal form
derived for soft oscillators interacting with sound waves. The excess vibrations
forming the boson peak have mainly transverse character. From the dynamic
structure factor in the Brillouin regime pseudo dispersion curves are calculated.
Whereas the longitudinal phonons are well defined up to the pseudo zone
boundary the transverse ones rapidly get over-damped and go through the Ioffe–
Regel limit near the boson peak frequency. In the high q regime constant-ω
scans of the dynamic structure factor for frequencies around the boson peak are
clearly distinct from those for zone boundary frequencies. Above the Brillouin
regime, the scans for the low frequency modes follow closely the static structure
factor. This still holds after a deconvolution of the exact harmonic eigenmodes
into local and extended modes. Also the structure factor for local relaxations
at finite temperatures resembles the static one. This semblance between the
structure factors mirrors the collective motion of chain-like structures in both
low frequency vibrations and atomic hopping processes, observed in the earlier
investigations.

1. Introduction

Despite much effort, the vibrational dynamics of amorphous materials and glasses is still not
fully understood and subject to a controversial debate. At first sight there are many similarities
between glasses and amorphous materials, and their ordered counterparts, the crystals. The
vibrational densities of states are normally similar and typical average frequencies or Debye
temperatures do not change dramatically from one state to another. This reflects the similarity
of the short range order of both states, primarily the average nearest neighbour distance is
similar. At higher, but still low, frequencies the vibrational density of states (DOS), Z(ω), in
glasses exceeds the Debye value and a maximum is seen in the inelastic scattering intensity,
the so-called boson peak (BP). Due to disorder the sound waves are increasingly damped with
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increasing frequency and eventually the damping exceeds the Ioffe–Regel limit: the mean free
path of the phonons diminishes below their wavelengths and the phonons are over-damped.
The vibrations can still be understood by harmonic theory but their eigenvectors will have a
complicated structure reflecting the structural disorder. The frequency, ωIR, where the Ioffe–
Regel limit is reached, is normally near the BP frequency, ωBP. As in defect crystals, one finds
in addition to the ‘band’ modes, localized vibrational modes above the maximum frequency
of the band modes or in gaps of the spectrum. In addition, particularly in molecular glasses,
there can be the equivalent of the optical vibrational modes of crystals, albeit often broken up
by disorder.

The dispute centres mainly on two issues: first, the nature of the excess of low frequency
modes above the Debye value, i.e. the origin of the BP, and secondly on the properties of
the phonons at higher frequencies. The term phonon is used here for an extended vibrational
mode which can be classified by a q-value. The latter question has gained great interest by the
advance of modern synchrotron sources which allows the measurement of structure factors in
Brillouin scattering.

The frequency domain, typically around ν = 1 THz, of the BP is accessible to a variety
of spectroscopic methods like Raman [1] and neutron scattering [2]. From the temperature
dependence of the measured intensities it has been deduced that the excitations are essentially
harmonic vibrations. The boson peak is, therefore, a maximum in Z(ω)/ω2. Mostly it is not
a maximum of the vibrational spectral density, Z(ω), itself.

Over the years a large number of explanations of the excess intensity and the BP have
been proposed. First, there are some materials where some molecular unit has an inherently
low frequency mode, such as in plastic crystals. These modes will trivially show as ‘excess’
intensity in Z(ω). We will not consider these. Secondly, there are materials where the BP is a
real effect of a disorder effect. The model studied here belongs to this class and it has also no
molecular vibrations or low lying optic modes in its crystalline form. Some authors attribute
the BP to vibrations of clusters of atoms of typical sizes [3, 4]. The origin of these clusters is
unclear and they have not been identified in numerical simulations. Another popular qualitative
explanation of the boson peak is a softening of acoustic phonons by static disorder [6, 5] due
to elastic Rayleigh scattering. However, estimates show that the Rayleigh contribution is too
small to explain the experimental data on thermal conductivity in glasses [6]. Sometimes the
BP is related to low lying optic modes of parental crystals [9, 7, 8]. Whereas the BP is a general
feature of glasses, such crystal structures with soft optic modes cannot always be identified.
Such a mechanism is possible in some cases. The distinction between optic modes, which
disorder has broken into segments, and resonant vibrations is not very clear.

Recent work on harmonic lattice models demonstrated that softening of disordered force
constants can smear and push to low frequencies peaks which exist in the crystalline DOS [10–
12]. In another approach the vibrations of a random distribution of atoms, interacting with a
Gaussian-shaped pair potential, was studied [13] in a harmonic scalar approximation.

A different explanation is offered by the soft potential model (SPM) [14, 15]. This model
gives a unified description of the glassy low energy dynamics: tunnelling, local relaxation and
excess in low frequency vibrations. For the latter it postulates low frequency oscillators which
interact bilinearly with the sound waves and hybridize with them. Thus quasi-local vibrations,
also called resonant vibrations, are created [16]. Fitting the model to the experimental data,
one finds effective masses of 20–100 atomic masses for the entities moving in these effective
soft potentials [17]. The sound waves in turn will be damped by resonant scattering with
these modes [18]. For low frequencies the SPM predicts an increase of the excess of the
DOS as Zexcess(ω) ∝ ω4. This rapid increase of Zexcess(ω) will lead to level repulsion and
an eventual crossover to Zexcess(ω) ∝ ω [19]. Recently it has been shown that the interaction
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between the soft oscillators in harmonic approximation causes unstable vibrations and negative
eigenvalues; the structural configuration becomes unstable. The response of the glass is then a
local relaxation to a new stable configuration which always exists due to anharmonicity. The
harmonic spectrum in this new stable configuration exhibits a BP with a universal shape as
it is observed in experiment. In particular the shape of the BP is independent of the actual
magnitude of the anharmonicity [20].

Computer simulations of a soft sphere glass (SSG) [21, 22] confirmed the existence of low
frequency quasi-localized vibrations with effective masses ranging from ten atomic masses
upwards. The modes were centred at structural irregularities with large local strains [23].
Regions of local strain have also been observed in earlier computer simulations [24]. Similar
effective masses have since been observed in many different simulations,e.g. SiO2 [25], Se [26]
in Ni–Zr [27], Pd–Si [28], Ni–B [29], amorphous ice [30] and amorphous and quasi-crystalline
Al–Zn–Mg [31]. In an earlier simulation of amorphous silicon, low frequency localized
vibrations have been observed at coordination defects [32]. It should be noted that computer
simulations with the usual periodic boundary conditions have a lower cutoff, ωmin-sound, for the
sound waves, which is given by the maximal wavelength fitting into the periodicity volume.
Quasi-localized vibrations with frequencies ω < ωmin-sound therefore appear in simulations as
truly localized vibrations which can be used as an easy way to identify them. For ω > ωmin-sound

hybridization with the sound waves occurs and the local vibrations are delocalized; they become
quasi-localized. This will lead to a small shift in Zexcess(ω) but does not affect the number of
excess modes. For a more detailed discussion see [34, 33]. For frequencies ω > ωmin-sound it
is still possible to change from the basis of exact harmonic eigenvectors to a basis of sound
waves and local vibrations with a small bilinear interaction [34]. The latter basis is the one
used in the SPM.

High resolution synchrotron scattering made it possible to observe the dynamic structure
factor, S(q, ω), in Brillouin scattering [35]. For a recent review see [36]. As in crystals, at the
lowest frequencies glasses have well defined longitudinal and transverse sound waves. Only
the longitudinal one is observed in Brillouin scattering at low q . At the lowest frequencies the
inelastic scattering function or the dynamic structure factor shows, as function of frequency for
a given q , only one peak which is ascribed to the longitudinal sound wave. At higher frequencies
a second peak, ascribed to the transverse sound, is observed [37]. This can be understood
considering that in a disordered system a transverse sound wave acquires a longitudinal
component and vice versa. Fitting a damped harmonic oscillator to S(q, ω) in amorphous
silica [38] and glycerol [39], one group concluded that propagating collective excitations exist
in glasses at high q-values, i.e. frequencies far above the BP. From measurements of densified
silica another group [40, 41] reached the opposite conclusion that the BP marks the end of the
propagating acoustic modes.

This question cannot at present be answered unambiguously from experiment. Additional
insight can be gained by computer simulation. Molecular dynamics simulations of amorphous
silica gave structure factors in good agreement with experiment. A fit with a damped harmonic
oscillator function gave a damping of the longitudinal mode γ (q) ∝ q2 for frequencies above
the BP [42, 43].

The aim of the present paper is to use a simple model glass, representative for densely
packed metallic glasses, to see what information can be gained from the dynamic structure
both in the Brillouin regime and for higher q-values. For this we extend our previous study of
the soft sphere glass [21, 22, 34]. This glass has the advantage that there is no parent crystal
with optical modes and no torsional motion as one has in silica which is built from more or
less rigid SiO4-tetrahedra. In the earlier studies [34] we found in a normal mode analysis that
the Ioffe–Regel limit is reached for the transverse acoustic modes near the BP. For the lowest
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frequency in the calculation the width of the phonon line could be split into two approximately
equal parts attributed to static disorder and to resonance scattering with QLV.

2. Computational details

The soft sphere glass (SSG) is described by an inverse sixth-power potential

u(r) = ε

(
σ

r

)6

+ A

(
r

σ

)4

+ B. (1)

To simplify the computer simulation and normal-mode analysis, the potential is cut off at
r/σ = 3.0, and then shifted by a polynomial, A(r/σ)4 + B , where A = 2.54 × 10−5ε and
B = −3.43 × 10−3ε were chosen so that the potential and the force are zero at the cutoff.
This form of the shifting function was chosen so that its effect is negligible near r/σ = 1.0.
Quantities such as the pressure and average potential energy will be changed by a few per cent
as a result of this truncation, but any changes in the equilibrium structure will be small. Without
loss of generality one can set ε = σ = m = 1. Where we do not explicitly state the units we
infer these ‘system units’. Note that this soft sphere potential is much softer than the one often
used with u12 ∝ (σ/r)12.

The calculations were done using the samples prepared earlier for investigations of
vibrations [34] and relaxations [44]. These had been prepared by the following procedure.
Liquid configurations of 5488 soft spheres were produced via constant-energy molecular
dynamics (MD) simulation with cubic periodic boundary conditions at a density ρσ 3 = 1.0
and temperature kT/ε ≈ 0.54 (about 2.5 times the melting temperature at this density [45]).
For the simulation, we used the velocity-Verlet algorithm with a time step of 0.04—in units of
(mσ 2/ε)1/2. The liquid was first quenched within the MD simulation by velocity rescaling to
a reduced temperature of about 0.005Tg. The quench rate was about 0.015k/(mσ 2ε)1/2. After
the MD quench, each sample was heated to 0.05Tg and aged for several thousand further MD
time steps to stabilize the potential energy and to avoid spurious minima. Each system was
finally quenched to zero temperature using a combination of the steepest-descent/conjugate-
gradient algorithm of our version of the Harwell code DEVIL, the metals version of the HADES
code. To improve statistics 11 different configurations of 5488 atoms created in this way were
analysed.

3. Vibrations

The vibrational dynamics was calculated in a classical harmonic approximation from the force
constant matrix of the T = 0 minimum configuration. The numerically exact minimization of
the potential energy prevents the occurrence of spurious unstable modes. The elements of the
force constant matrix are given by

Dmn
αβ = ∂2u(|Rm − Rn|)

∂ Rm
α ∂ Rn

β

, m �= n. (2)

Unlike in our previous work [34], all eigenvalues, (ωσ )2, and eigenvectors, en(σ ), were
calculated by direct diagonalization.

To localize the BP we calculate the vibrational density of states from the frequencies of
the 3N − 3 vibrational modes σ as

Z(ω) =
〈

1

3N − 3

∑
σ

δ(ω − ωσ )

〉
(3)
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Figure 1. Vibrational spectrum divided by ω2 versus ω. The solid curve gives the simulation
results, corrected by a Debye contribution at the lowest frequencies. The dashed curve is a fit with
the model of [20].

where δ is the discretized δ function and 〈 〉 stands for the averaging over configurations. Within
the numerical accuracy the resulting spectrum is unchanged from figure 1 of [34]. The maximal
frequency is ωmax ≈ 12.6. There is a slight dip around ω = 9.5 which is characteristic for the
chosen soft sphere glass. It reflects the factor of three between the longitudinal and transverse
sound velocities. It disappears for harder models, i.e. a larger exponent of the σ/r -term in
equation (1).

Figure 1 (solid curve) shows the calculated Z(ω)/ω2 corresponding to the BP. From the
size of our simulation cell we calculate from the elastic constants ωmin-sound = 0.52 and 1.76
for the longitudinal and transverse sound, respectively. The simulated density of states has no
sound waves below these cutoffs. To compensate for this we added for the lower frequencies
a Debye contribution to Z(ω), calculated from the elastic constants. The dashed curve shows
the theoretical estimate for the model of interacting soft oscillators and sound waves [20]

Z theor(ω) = ZD(ω) + Zexcess(ω) (4)

where ZD(ω) is the Debye spectrum and Zexcess(ω) the excess causing the BP. There is very
good agreement between the two curves up to ω = 2ωBP. The deviation at higher frequencies
has to be expected. We arrive, in agreement with the earlier work, at an estimate ωBP = 0.5
which is near to ωmin-sound of the transverse branch and well below the corresponding value of
the longitudinal branch. The considered soft sphere glass, therefore, represents an interesting
example of a material where one has a low lying pronounced BP and a strong separation of
the two branches of sound waves. This distinguishes it from the Lennard-Jones glass.

In a classical harmonic approximation the dynamic structure factor can be written as

S(q, ω) = 1

Nω

〈∑
σ

∣∣∣∣
∑

n

(q · en(σ )) exp(iq · Rn)

∣∣∣∣
2

δ(ω − ωσ )

〉
. (5)

where δ is the discretized δ function and 〈 〉 stands for the averaging over configurations and
directions of q. Here we omitted the temperature dependent factor kT/h̄ω, the high temperature
limit of the phonon occupation number. The inelastic scattering intensity is given by

I (q, ω) ∝ kT

ω
S(q, ω). (6)

Often the structure factor is defined including the temperature factor, it is then directly
proportional to the inelastic scattering intensity. In our previous paper [34] we used a definition
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Figure 2. Pseudo dispersion curves in the soft sphere glass (longitudinal: top, transverse: bottom)
calculated from the structure factor without the phonon occupation factor. The error bars indicate
the full width at half height. The dashed line gives the linear dispersion given by the sound velocities,
calculated from the elastic constants of the glass.

excluding the factor 1/ω in equation (5):

SFT(q, ω) = ωS(q, ω). (7)

This corresponds to a projection of the Fourier transform of the eigenvectors. For broad
distributions in ω the different definitions will lead to shifts in the maximum and width.

Analogous to the usual structure factor which projects out the longitudinal components
of the vibrations one can define a transverse one as

Str(q, ω) = 1

Nω

〈∑
σ

∣∣∣∣
∑

n

(q × en(σ )) exp(iq · Rn)

∣∣∣∣
2

δ(ω − ωσ )

〉
. (8)

It gives, for small q , access to the transverse vibrations which are not observable in the scattering
experiments. We study the structure factors both in the Brillouin regime, i.e. below the first
peak of the static structure factor (in our system at qFP = 7σ−1, see figure 5), and above for
large q values.

3.1. Brillouin regime

As done by other authors we do constant-q scans of the dynamic structure factor and define
the maxima in ω as phonon frequencies and derive in this way a pseudo dispersion curve.
This is shown in figure 2 for both the longitudinal and transverse branches determined from
equations (5) and (8), respectively. The error bars indicate the full width half maximum.

One sees a very different behaviour of the two branches. Whereas the longitudinal one is
well defined well beyond the pseudo zone boundary qZB = 0.5qFP, the transverse one becomes
rapidly over-damped. The different broadenings of the two branches indicate a large difference
in their coupling to the BP modes. This is seen even more clearly when we define the phonons
from the scattering intensity, i.e. include the factor kT/ω. The longitudinal branch is only
slightly affected whereas the transverse one broadens even more, and above q = 1.8σ−1 the
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Figure 3. Half width half maximum divided by ω versus q, calculated from the dynamic structure
factor with different ω-weighting. Open and full symbols represent the longitudinal and transverse
branches, respectively; squares: weighting according equation (5), circles: equation (6), triangles:
equation (7). The dashed line indicates the Ioffe–Regel limit �(q) = ω(q)/2π .

maximal intensity is no longer at some ill-defined phonon line but drops to the BP frequency.
This indicates the transverse nature of the BP. It should be noted that the frequencies of both
branches at the pseudo zone boundary are much higher than the BP frequency ωBP. This
certainly does not justify an explanation of the BP in terms of soft zone edge phonons. For
low q , both branches show a linear dispersion according to ω = cq . The transverse branch
shows above q = 1, 5σ−1 an apparent slightly positive dispersion as has been seen for the
longitudinal branch in SiO2 [42].

Figure 3 gives the broadening of the pseudo dispersion for different weightings with
1/ω, corresponding to the definitions via the scattering intensity (equation (6)), the correlation
function (equation (5)) or a Fourier transform of the eigenstates (equation (7)). As to be
expected the definition does not change the broadening at the low q-values but is essential
above the Ioffe–Regel limit when �(ω) > ω/2π . The longitudinal branch goes through ωIR at
q = 4σ−1 beyond which value it rises rapidly as q → qFP. The transverse branch has already
gone through ωIR at q = 0.5σ−1. There are three apparent regions in �(q), best seen in the
values derived SFT(q, ω). At the lowest q the width, �(q), increases with a power of q2 or
larger, followed by �(q) ∝ q ∝ ω(q) and finally there is an upturn for q → qFP.

The soft potential model predicts �(q) ∝ q4 for ω(q) < ωBP which is derived from the
initial increase of the excess vibrational DOS Zexcess(ω) ∝ ω4 [18]. Unfortunately, the low
value of ωBP in the investigated soft sphere glass excludes this regime from our simulation.
The simulation cell would have to be large enough not only to allow small q-values, it would
also have to accommodate several mean free paths of these phonons. Otherwise the phonons
would be scattered by a periodic repetition of equal defects instead of a distribution of different
defects. For q < 1σ−1 we observe for the transverse branch an increase, �(q) ∝ q2, as has
been observed earlier for strongly frustrated systems [46]. The section where �(q) ∝ ωq is
broadly compatible with the increase of the total Z(ω) ∝ ω for ω > ωBP. Above the BP
the transverse modes are strongly mixed with the quasi-localized vibrations and amongst each
other. Therefore all transverse modes can be considered as scattering centres.

Our results for the pseudo dispersion curves agree with the earlier calculation by Caprion
et al [47]. There is, however, a marked difference in the calculated widths. This might be
due both to the better resolution in the present work and also to the different procedure used
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Figure 5. Constant frequency scans of the dynamic structure factor. Solid curve: static structure
factor; (a) dashed curve ω = 0.6 ≈ ωBP, long dashed curve ω = 3.8, dotted curve ω = 8, dash
dotted curve ω = 12; (b) ω = 0.6 ≈ ωBP, dashed curve averaged as in (a), dotted line: extended
mode, dash dotted curve: local mode.

to calculate �(ω). We define the width directly from the width at half maximum, whereas
Caprion uses a Lorentzian fit. It was noted earlier that the peaks in S(q, ω) are asymmetric [34].
This makes a fit dependent on details of the adopted fitting procedure.

3.2. Structure factor at high q-values

The dynamic structure factor in the Brillouin regime provides only rather limited information
on the structure of the vibrational modes, even if one includes the experimentally hardly
measurable transverse branch. Additional information can be gained if one includes q-values
beyond the first diffraction peak where S(q, ω) can be measured by inelastic neutron scattering.
As seen from figure 4 the dynamic structure factor exhibits, even for this simple material, a
rich structure. For the sake of clarity we plotted SFT(q, ω)/q2 Z(ω). Taking constant ω cuts
of S(q, ω) one gets distinct patterns for the average of the modes with that frequency.
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In figure 5(a) we show four such constant omega scans: for ω = ωBP, for the top of
the apparent acoustic phonon in figure 2, for ω near the Einstein average and for localized
vibrations. For comparison the static structure factor, Sstat(q), is also shown. Comparing the
low frequency and high frequency vibrations one observes a clear shift of phase with respect to
the static structure factor. The low frequency vibrations are in phase but the localized ones are
in anti-phase to Sstat(q). In simple densely packed materials, e.g. metals, the nearest neighbour
coupling dominates. Localized vibrations are vibrations of neighbouring atoms against each
other and this is seen as phase shift against Sstat(q). Low frequency vibrations on the other hand
must not involve significant changes of the nearest neighbour distance and therefore show no
phase shift. The intermediate frequency modes (ω = 3.8 and 8) show a mixed behaviour. The
lower of the two frequencies corresponds to the high frequency edge of the transverse mode.
In the constant-ω scan one sees a narrow line at low q from the longitudinal phonon, a flat
maximum around qFP and a weak modulation, clearly distinct from Sstat(q) at larger q . For the
other scan with ω = 8, which is above the apparent maximal transverse phonon frequencies,
one sees again the narrow peak of the longitudinal phonon, now at a higher q-value, and
additionally a broader peak marking the descent of the pseudo-dispersion for q → qFP. The
oscillations for larger q are out of phase with Sstat(q) and damped compared to the curve for
the localized vibrations. Clearly the character of the modes with ω ≈ ωBP is distinct from
the one of the zone boundary modes. Using our previous results, we take a closer look at the
modes responsible for the BP.

In [34] we deconvoluted the exact low frequency eigenvectors of the present system into
extended sound-wave-like modes and local modes with a weak bilinear interaction. This
was done by rotating the basis of modes in a narrow energy range. This way we extracted
optimally localized vibrational modes and automatically gained the proper number of extended
phonons. The total number of modes is preserved and the number of modes in a given frequency
interval is only marginally altered. The resulting extended and localized modes are no longer
eigenvectors of the dynamic matrix but have a weak bilinear interaction. This is the picture
used in the soft potential model. In figure 5(b) we compare Sstat(q) with constant-ω scans at
ω ≈ ωBP for the true harmonic eigenmodes and the deconvoluted extended and local parts.
It is not surprising that the curves of the deconvoluted extended modes follows Sstat(q) even
more closely than the one of the eigenmodes. This property of sound waves was suggested
by Buchenau et al [48] as a distinguishing feature between them and local vibrations. This
difference is clearly not very pronounced in the present case. For the deconvoluted local low
frequency modes the first peak is certainly reduced but still quite pronounced. For larger q the
scans of the extended and local modes are hardly distinguishable. This somewhat surprising
result is a consequence of the strongly collective nature of the local vibrations, which form the
cores of the quasi-localized vibrations seen in Zexcess. These modes are collective motions of
chains of 10 and more atoms [21, 49, 34]. Such modes are typical for densely packed metallic
glasses.

4. Relaxations

Besides vibrations one observes in a glass aperiodic jumps of groups of atoms, i.e. local
relaxations. Such jumps give rise, e.g., to the telegraph noise in point contacts and are thought
to be the elementary process in diffusion [50]. In our previous study of relaxations in the soft
sphere glass we found them to be closely correlated to the quasi-localized vibrations. They
are again collective motions of chains of atoms [49, 44]. At low temperatures any given atom
moves in such a jump only a fraction of the nearest neighbour distance. One can observe these
collective jumps in a molecular dynamics simulation by monitoring the total displacement of
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Figure 6. Structure factor of local relaxations at temperatures up to 0.15Tg. Full curve: static
structure factor; dashed curve: average over relaxations with �R < 5σ ; dash dotted curve: average
over relaxations with �R < 10σ .

all atoms as a function of time

�R(t) =
√∑

n

(Rn(t) − Rn(0))2 (9)

where Rn(t) is the position vector of particle n, at time t , and Rn(0) is the one at the starting or
reference configuration. �R(t) oscillates due to the vibrations and changes due to relaxations,
i.e. due to the transitions from one local energy minimum to another. At low temperatures
T ≈ 0.05Tg, the maximal distance an individual atom travels in these jumps is only 0.3σ ,
about a quarter of RNN. Increasing the temperature by a factor of four the jumps seen at the
lower temperature can no longer be resolved and new jumps over larger distances are observed.

All observed relaxations were collective jumps localized to 10 and more atoms forming
twisted chain-like structures with some side branching [44]. This collectivity is again
reflected in the relaxational structure factor, defined by analogy with the vibrational SFT(q, ω)

(equation (7)) one

Srel(Q) = 1

Q2

〈∣∣∣∣
∑

n

Q�Rn exp(iQRn)

∣∣∣∣
2〉

(10)

where �Rn is the jump vector of atom n and 〈· · ·〉 denotes averaging over angle and
relaxations. The relaxational structure factor is similar to the corresponding curve for the
low frequency vibrations. It follows its static counterpart closely, independent of the jump
lengths. The smoothing out of the higher peaks is more pronounced for the longer jumps
occurring predominantly at higher temperatures. Comparing figures 5(a) and 6 one sees the
close correlation between quasi-localized vibrations and atomic jumps expressed which we
established earlier by correlating vibrational eigenvectors and jump vectors [44].

5. Conclusions

The vibrational spectrum of the 1/r6 soft sphere glass shows a pronounced boson peak. The
boson peak frequency is very low at about 5% of the maximal frequency. The shape of the
boson peak is in accordance with the one obtained from a model of interacting soft oscillators
and sound waves. Calculating pseudo dispersion curves one finds a different behaviour for
longitudinal and transverse phonons. Whereas the longitudinal ones are well developed in the
whole of the first pseudo Brillouin zone the transverse ones become over-damped near the
boson peak frequency. Perhaps not surprisingly, but often forgotten, this shows that depending



Vibrations and relaxations in a soft sphere glass S2669

on the underlying atomic structure the two branches of sound waves can vary in their behaviour
as function of q . In the studied model glass, the boson peak vibrations have predominantly
transverse character.

From the structure factor at higher q we find that the boson peak vibrations are distinct
from the zone boundary modes. They closely follow the structure of the static structure factor.
Splitting the exact eigenmodes into extended phonons and localized modes one finds that both
components again follow the large q part of the static structure factor. The larger extent of
the phonons is seen as a larger amplitude at the first peak. This semblance of the structure
factors can be understood from the collectivity of the localized vibrations, the cores of the
quasi-localized vibration. As we found earlier these modes are collective vibrations of chains
of 10 and more atoms. These chains move in such a way that the nearest neighbour distances
do not change markedly.

The structure factor of local relaxations again resembles the static one and is closely related
to the one of the boson peak vibrations. This is seen as a consequence of the similar structure
of the low frequency localized vibrations which produce the boson peak in inelastic scattering
and the collective jump processes which are the elementary step in diffusion and relaxation in
metallic glasses.
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